Reproductive and offspring developmental effects following maternal inhalation exposure to methanol in nonhuman primates.
نویسندگان
چکیده
INTRODUCTION In an effort to improve air quality and decrease dependence on petroleum, the federal government, industry, and other groups have encouraged development of alternative fuels such as methanol to substitute for gasoline or diesel fuel. Methanol is also a candidate to provide the hydrogen for fuel cells, which are being developed for a variety of power sources (including motor vehicle engines). Before people are exposed to increased concentrations of methanol, the potential health effects of such exposures require study. Methanol, a simple alcohol containing one carbon atom, occurs naturally in plants and animals and participates in human metabolism. People regularly consume low doses of methanol in fruits, vegetables, and fermented beverages as well as soft drinks and foods sweetened with aspartame (which breaks down to methanol in the gastrointestinal tract). Despite its ubiquitous presence, methanol can be highly toxic if sufficient quantities are consumed. Ingestion of methanol (usually in the form of wood alcohol or tainted alcoholic beverages) can result in metabolic acidosis, blindness, and even death. Although the body has the capacity to metabolize the low doses of methanol to which people are regularly exposed, it cannot handle high doses because too much methanol overwhelms the body's ability to remove a toxic metabolite (formate). When formate accumulates, methanol poisoning occurs. One factor that regulates the rate at which formate is removed is the liver level of a derivative of the vitamin folic acid. People who are deficient in folic acid (including 15% to 30% of pregnant women) may be particularly susceptible to the toxic effects of methanol. If methanol were to be widely adopted as a fuel, environmental exposures would increase through ingestion of contaminated drinking water, inhalation of vapors from evaporative and other emissions, and dermal contact. Current concentrations of methanol in ambient air are very low, 1 to 30 parts per billion (ppb). If all motor vehicles in the United States were converted to 100% methanol fuel, methanol levels in ambient air are estimated to increase approximately 1,000-fold (to 1 to 10 ppm in cities) and in a worst-case situation could occasionally reach concentrations as high as 200 ppm in enclosed spaces (HEI 1987). Inhaling these concentrations of methanol for short periods of time is not predicted to affect formate production and thus should not present a health risk. However, little is known about the consequences of long-term inhalation of methanol vapors, especially in susceptible populations of pregnant women and developing fetuses. HEI, therefore, developed a research program to address this information gap. APPROACH Dr. Thomas Burbacher and colleagues of the University of Washington studied the effects of long-term exposure to methanol vapors on metabolism and reproduction in adult female monkeys (Macaca fascicularis) and developmental effects in their offspring, who were exposed prenatally to methanol. The investigators exposed adult female monkeys (11 to 12 animals/group) to one of four concentrations of methanol vapors (0, 200, 600, and 1,800 ppm) for 2.5 hours a day, seven days a week during the following periods: (1) before breeding, (2) during breeding, and (3) during pregnancy. They collected blood from the adults at regular intervals to monitor methanol levels (which served as a marker of internal dose) and formate concentrations. They also conducted pharmacokinetic studies to determine whether methanol disposition (which includes absorption, distribution, metabolism, and excretion) was altered as a result of repeated methanol exposures and to assess pregnancy-related changes. Because high doses of methanol damage the central nervous system, the infants (8 to 9 animals/group) were examined at regular intervals during the first nine months of life to assess their growth and neurobehavioral development. RESULTS Exposure to methanol vapors did n
منابع مشابه
Maternal Exposure to Silver Nanoparticles in Mice: Effects on Dams’ Reproductive Performance and Pups’ Neurobehavioral Ontogeny
Introduction: - Significant increase in usage of silver nanoparticles (AgNPs) in consumer products, has increased its exposures to human and animals. Although there are some reports regarding the effects of AgNPs on complex organisms, no report was found as to its effects on neurobehavioral ontogeny. Methods: To investigate the effects of maternal exposure to AgNPs on development of neu...
متن کاملPrenatal and Maternal Psychosocial Stress in Primates: Adaptive Plasticity or Vulnerability to Pathology?
In many species of vertebrates, prenatal and early postnatal stress can have long-lasting consequences for neuroanatomical, neuroendocrine, or behavioral development. In primates including humans, prenatal psychosocial stress and postnatal psychosocial stress induced by the mother’s behavior represent important sources of nongenetic maternal effects through which mothers can modify their offspr...
متن کاملThe Impact of Plasmodium Berghei Exposure In-utero on Neurobehavioral Profile in Mice
Introduction: The World Health Organization estimates that about 25 million pregnant mothers are currently at risk for malaria, and that malaria accounts for over 10,000 maternal and 200,000 neonatal deaths per year. The current hypothesis of early life programming supports the premise that many developmental delay and disorders may have their origin In-utero. Therefore, the current study aimed...
متن کاملPhase-specific developmental toxicity in mice following maternal methanol inhalation.
Methanol is toxic to embryos of mice and rats when inhaled by dams at high concentrations. The present studies examined methanol-induced developmental toxicity following inhalation exposure (6 hr/day) of pregnant CD-1 mice to 5000, 10,000 or 15,000 ppm either throughout organogenesis (GD 6-15), during the period of neural tube development and closure (GD 7-9), or during a time of potential neur...
متن کاملEvaluation of the Protective Effect of Astaxanthin Against Undesired Effects of Prenatal Bacterial Lipopolysaccharide (LPS) Exposure on Maternal Behaviors and Neuronal Changes of Adult Male Offspring in NMRI Mice
Background: Prenatal bacterial lipopolysaccharides (LPS) exposure causes damage of the brain and gonadal system.The aim of this study included determination of astaxanthin effect to ameliorate undesired effects of bacterial LPS during fetal period and improve maternal behavior, body weight and length and neural changes in adult male NMRI mice. Methods: Pregnant female mice were divided into fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Research report
دوره 89 شماره
صفحات -
تاریخ انتشار 1999